スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform【PDF版】 新発売

翔泳社(出版社) , ValliappaLakshmanan(著) , 葛木美紀(訳) , 中井悦司(監修) , 長谷部光治(監修)

商品番号
162910
販売状態
発売中
納品形態
会員メニューよりダウンロード
発売日
2019年06月05日
ISBN
9784798162911
データサイズ
約9.3MB
制限事項
印刷可・テキストのコピー可
キーワード
データベース  クラウド  電子書籍【PDF版】  データ分析  GCP  機械学習

販売価格:¥4,104(税込)

送料無料 在庫あり

本体価格の10%をポイント還元(会員限定)

紙の書籍を見る
ほしい物リストに追加
  • 本製品は電子書籍【PDF版】です。
  • ご購入いただいたPDFには、購入者のメールアドレス、および翔泳社独自の著作権情報が埋め込まれます。
  • 本製品を無断で複製、転載、譲渡、共有および販売を行った場合、法律により罰せられる可能性がございます。
  • ご購入の前に必ずこちらをお読みください。

身近な例からデータサイエンスの深淵を体感し
スケールさせるノウハウを学ぶ

【本書の内容】
「膨大なデータを分析して傾向を探り意思決定に援用する」とはよく耳にするフレーズですが、「膨大なデータ」から「援用する」までの間に、どのようなことがなされているのでしょうか。その各段階における必要な知識や技能やツールやインフラにはなにがあるのでしょうか。
本書はそういった疑問を、身近な例(フライトスケジュールからミーティングの参加・不参加確定)から説き起こします。とはいえ、それは単に米国運輸省のデータをダウンロードし、フライトの傾向を時間軸に合わせて分析し、スケジュールとして提示する、という“シンプル”なストーリーではありません。
「データ分析を実行してビジネスで成果を出す」ことができる人を「データエンジニア」と呼ぶ、Googleならではの文化が色濃く出た1冊です。すなわち、クエリの構築やレポート、グラフ化が最終目標ではなく、それらをひっくるめたスケーラブルで反復可能なシステムを構築できる人材への足がかりとなる1冊であり、肩書としての「データサイエンティスト」から、真に求められているデータサイエンティストへと、自身をスケールしていくための手引書です。

本書は、
Valliappa Lakshmanan,
"Data Science on the Google Cloud Platform: Implementing End-to-End Real-Time Data Pipelines: From Ingest to Machine Learning", O'Reilly Media, January 12, 2018.
の邦訳版です。

【本書のポイント】
・Google Cloud Platformの具体的な活用方法
・データ分析からサービス構築まで、必要な知識
・データサイエンスをスケールするという考え方

【読者が得られること】
・データサイエンスに必要な知識を段階を追って習得できる
・データ収集からサービス構築までの一連の流れを理解できる
・各ステージにおける勘所や肝となる考え方を学べる
・Google Cloud Platformにある一群のツールを使えるようになる
・統計学や機械学習を理解していれば、モデルをコード化できるようになる

【対象読者】
・データエンジニア、データサイエンティスト
・データアナリスト、データベース管理者
・システムプログラマ

PDF版のご利用方法

  1. ご購入後、SEshopにログインし、会員メニューに進みます。
  2. ご購入電子書籍およびデータ > [ご購入電子書籍およびダウンロードデータ一覧]をクリックします。
  3. 購入済みの電子書籍のタイトルが表示されますので、リンクをクリックしてダウンロードしてください。
  4. PDF形式のファイルを、お好きな場所に保存してください。
  5. 端末の種類を問わず、ご利用いただけます。

第1章 データに基づくより良い意思決定
 1.1 多くの同様な意思決定
 1.2 データエンジニアの役割
 1.3 クラウドで実現するデータエンジニアリング
 1.4 この本の対象読者
 1.5 クラウドで進化したデータサイエンス
 1.6 この本で扱うケーススタディについて
 1.7 確率論的な意志決定
 1.8 データとツール
 1.9 コードに触れてみる
 1.10 まとめ

第2章 クラウドへのデータの取り込み
 2.1 オンタイム・パフォーマンスデータ
 2.2 データの保存場所
 2.3 データの取り込み
 2.4 毎月のダウンロードをスケジュールする
 2.5 まとめ
 2.6 コードに触れてみる

第3章 魅力的なダッシュボードを作成する
 3.1 ダッシュボードでモデルを説明する
 3.2 最初にダッシュボードを作成する理由
 3.3 正確さ、信頼性、良いデザイン
 3.4 Google Cloud SQLにデータを読み込む
 3.5 Google Cloud SQLインスタンスを作成する
 3.6 Google Cloud Platformの操作方法
 3.7 MySQLのアクセス制御
 3.8 テーブルの作成
 3.9 テーブルへのデータインポート
 3.10 第1のモデル
 3.11 ダッシュボードの作成
 3.12 データポータルを使ってみる
 3.13 まとめ

第4章 ストリーミング・データ処理
 4.1 イベントフィードの設計
 4.2 時刻補正
 4.3 Apache Beam/Cloud Dataflow
 4.4 Cloud Pub/Subにイベントストリームを発行する
 4.5 リアルタイムストリーミング処理
 4.6 まとめ

第5章 インタラクティブなデータ探索
 5.1 探索的データ分析
 5.2 フライトデータをBigQueryに読み込む
 5.3 Cloud Datalabによる探索的データ分析
 5.4 データの品質管理
 5.5 出発遅延時間に対応した到着遅延時間
 5.6 モデルの評価
 5.7 まとめ

第6章 Cloud Dataprocによるベイズ分類器
 6.1 MapReduceとHadoopエコシステム
 6.2 Spark SQLを使用した変数の離散化
 6.3 Pigを用いたベイズ分類
 6.4 まとめ

第7章 Sparkによるロジスティック回帰分析
 7.1 ロジスティック回帰
 7.2 特徴量エンジニアリング
 7.3 まとめ

第8章 スライディングウィンドウによる集計処理
 8.1 時間平均の必要性
 8.2 JavaでのDataflow
 8.3 時間平均の計算
 8.4 監視、トラブルシューティング、パフォーマンスチューニング
 8.5 まとめ

第9章 TensorFlowを用いた分類モデル
 9.1 より複雑なモデルへ
 9.2 データをTensorFlowに読み込む
 9.3 Experimentクラスの設定
 9.4 ディープニューラルネットワーク(DNN)モデル
 9.5 まとめ

第10章 リアルタイム機械学習
 10.1 予測サービスの呼び出し
 10.2 フライト情報への予測の追加
 10.3 ストリーミングパイプライン
 10.4 トランザクション、スループット、待ち時間
 10.5 まとめ
 10.6 本書のまとめ

付録A 機械学習データセット内の機密データに関する考慮事項
 A.1 機密情報の取り扱い
 A.2 機密データの識別
 A.3 機密データの保護
 A.4 ガバナンスポリシーの確立

各種問い合わせは以下のリンクからご連絡ください

関連商品

Pythonで動かして学ぶ!あたらしい機械学習の教科書 第2版

販売価格:2,894円(税込)

2019.07.18発売

おすすめ特集

今月のクーポン

翔泳社の通販SEshopなら全品送料無料、ポイント還元、さらに毎月更新の割引クーポンでお得!

Python特集

【今からはじめるPython特集】おすすめ本を入門~上級までレベル別にご紹介!

情報処理教科書シリーズ

情報処理技術者試験におすすめの参考書「EXAMPRESS 情報処理教科書シリーズ」で最短合格!

アルゴリズムと数学の本

プログラマ脳を鍛える!エンジニアが読むべきアルゴリズムと数学の本特集。

【特集】翔泳社のロングセラービジネス書

初版刊行以来人気を集め続けている翔泳社のロングセラービジネス書をご紹介。

SQL/データベース関連本特集

初心者向けの入門書から、達人レベルの専門書まで!SQL/データベース関連おすすめ本特集。

特集をもっと見る