現場で使える!Python深層学習入門 Pythonの基本から深層学習の実践手法まで 発売予定

翔泳社(出版社) , 木村優志(著)

商品番号
150970
販売状態
発売予定
納品形態
宅配便にてお届け
発売日
2019年06月20日
ISBN
9784798150970
判型
A5
ページ数
400
キーワード
Python  GCP  深層学習  AI & TECHNOLOGY

販売価格:¥3,456(税込)

送料無料 お取り寄せ品

本体価格の10%をポイント還元(会員限定)

電子書籍を見る
ほしい物リストに追加

【本書の概要】
本書は、深層学習の開発環境の準備とPythonの基本、深層学習の基本、そして実際の現場での利用方法について解説した書籍です。
ニーズの高い、人気の深層学習モデルを利用した画像処理モデルの構築方法を解説しています。
最終章では転移学習という手法を用いた画像認識モデルの作成と、Google Cloud Platform(GCP)にデプロイする手法を解説しています。

【読者対象】
人工知能関連の開発に携わる開発者、研究者

【著者】
木村優志(きむら・まさし)
博士(工学)。ATR-trek、富士通を経て、現在はConvergence Lab.の代表として多数のAI案件を手がける。
株式会社アイデミー 技術顧問。

PROLOGUE 開発環境の準備
 0.1 Anacondaのインストール
 0.2 Google Crabolartyを利用する
 0.3 macOSに仮想環境を作成する

◆Part 1 Python入門編

CHAPTER 1 演算・変数・型
 1.1 Hello worldを出力する
 1.2 Pythonの用途
 1.3 コメントの入力
 1.4 数値と文字列
 1.5 演算
 1.6 変数
 1.7 変数の更新
 1.8 文字列の連結
 1.9 型
 1.10 型の変換
 1.11 比較演算子の変換
 1.12 比較演算子の変換

CHAPTER 2 if文
 2.1 if文
 2.2 else文
 2.3 elif
 2.4 and・not・or

CHAPTER 3 リスト型
 3.1 リスト型(1)
 3.2 リスト型(2)
 3.3 リスト in リスト
 3.4 リストから値を取り出す
 3.5 リストからリストを取り出す方法
 3.6 リストの要素の更新と追加
 3.7 リストから要素を削除
 3.8 リスト型の注意点

CHAPTER 4 辞書型
 4.1 辞書型
 4.2 辞書の要素を取り出す
 4.3 辞書の更新と追加
 4.4 辞書の要素の削除

CHAPTER 5 while文
 5.1 while文(1)
 5.2 while文(2)
 5.3 while + if

CHAPTER 6 for文
 6.1 for文
 6.2 break
 6.3 continue
 6.4 for文でindex表示
 6.5 リスト in リストのループ
 6.6 辞書型のループ

CHAPTER 7 関数とメソッド
 7.1 関数の基礎と組み込み関数
 7.2 関数とメソッド
 7.3 文字列型のメソッド
 7.4 文字列型のメソッド(format)
 7.5 リスト型のメソッド(index)
 7.6 リスト型のメソッド(sort)
 7.7 関数の作成
 7.8 引数
 7.9 複数の引数
 7.10 引数の初期値
 7.11 return
 7.12 関数のimport(インポート)

CHAPTER 8 オブジェクトとクラス
 8.1 オブジェクト
 8.2 クラス(メンバとコンストラクタ)
 8.3 クラス(メソッド)
 8.4 文字列のフォーマット指定

◆Part 2 深層学習編

CHAPTER 9 NumPyと配列
 9.1 NumPyの概要
 9.2 NumPyのimport
 9.3 NumPy vs リスト
 9.4 arrayの生成
 9.5 要素へのアクセス
 9.6 np.arrayのプロパティ
 9.7 slice
 9.8 条件を指定して配列にアクセスする
 9.9 配列の演算
 9.10 np.arrayのshapeを操作する
 9.11 配列の連結
 9.12 配列の分割
 9.13 配列のコピー
 9.14 配列の様々な演算
 9.15 ブロードキャスト

CHAPTER 10 PandasとDataFrame
 10.1 Pandasの概要
 10.2 DataFrameの生成
 10.3 DataFrameの表示
 10.4 統計量の表示
 10.5 DataFrameの整列(sort)
 10.6 DataFrameの選択
 10.7 条件を指定して値を取り出す
 10.8 列の追加
 10.9 DataFrameの演算
 10.10 複雑な演算
 10.11 DataFrameの連結
 10.12 グルーピング
 10.13 グラフの表示

CHAPTER 11 単純パーセプトロン
 11.1 単純パーセプトロンの概要
 11.2 単純パーセプトロンの実習

CHAPTER 12 ディープラーニング入門
 12.1 ディープラーニングの概要
 12.2 CrossEntropy
 12.3 softmax
 12.4 SGD
 12.5 勾配消失問題
 12.6 ディープラーニングを利用した学習
 12.7 密結合ニューラルネットワークによる分類
 12.8 密結合ニューラルネットワークによる分類(CIFAR10)
 12.9 畳み込みニューラルネットワークの概要
 12.10 バッチ正則化
 12.11 Global Average Pooling
 12.12 keras

CHAPTER 13 転移学習とNyanCheckの開発
 13.1 転移学習の概要
 13.2 NyanCheckについて
 13.3 NyanCheckのアプリケーション構成
 13.4 データの収集・整理・分類
 13.5 データを拡張し、学習させる
 13.6 Google Cloud Platformについて
 13.7 Google Cloud Platformの設定
 13.8 Google Cloud SDKの設定
 13.9 Anacondaの設定
 13.10 NyanCheckを動かす

各種問い合わせは以下のリンクからご連絡ください

関連商品

Pythonで動かして学ぶ!あたらしい機械学習の教科書 第2版

販売価格:2,894円(税込)

2019.07.18発売

おすすめ特集

今月のクーポン

翔泳社の通販SEshopなら全品送料無料、ポイント還元、さらに毎月更新の割引クーポンでお得!

Python特集

【今からはじめるPython特集】おすすめ本を入門~上級までレベル別にご紹介!

情報処理教科書シリーズ

情報処理技術者試験におすすめの参考書「EXAMPRESS 情報処理教科書シリーズ」で最短合格!

アルゴリズムと数学の本

プログラマ脳を鍛える!エンジニアが読むべきアルゴリズムと数学の本特集。

【特集】翔泳社のロングセラービジネス書

初版刊行以来人気を集め続けている翔泳社のロングセラービジネス書をご紹介。

SQL/データベース関連本特集

初心者向けの入門書から、達人レベルの専門書まで!SQL/データベース関連おすすめ本特集。

特集をもっと見る