※1点の税込金額となります。 複数の商品をご購入いただいた場合のお支払金額は、 単品の税込金額の合計額とは異なる場合がございますので、予めご了承ください。
【本書の概要】
機械学習やデータサイエンスを扱う現場では、Pythonの高機能で利用しやすい数学・科学系ライブラリが活用されています。本書は、その中でも機械学習・データサイエンスの現場でよく利用されているNumPyをピックアップ。Numpyの基本から始まり、現場で使える実践的な高速データ処理手法について解説します。特に、配列の処理に力点を置いています。最終章では機械学習における実践的なデータ処理手法について解説します。
【第2版の変更点】
・Python 3.11に対応
・各種ライブラリのアップデート
【NumPy(ナンパイ)とは】
NumPyは、機械学習・データサイエンスの現場で扱うことの多い多次元配列(行列やベクトル)を処理する高水準の数学関数が充実しているライブラリです。Python単体では遅い処理であっても、C言語なみに高速化できるケースもあり、機械学習・データサイエンスにおけるデータ処理に欠かせないライブラリとなっています。
【対象読者】
・機械学習エンジニア
・データサイエンティスト
【目次】
Chapter1 NumPyの基本
Chapter2 NumPy配列を操作する関数を知る
Chapter3 NumPyの数学関数を使う
Chapter4 NumPyで機械学習を実装する
【著者プロフィール】
吉田拓真(よしだ・たくま)
データサイエンス関連のサービスを提供する株式会社Spot 代表取締役社長。Webメディア『DeepAge』編集長。
尾原 颯(おはら・そう)
東京大学工学部機械工学科所属。大学ではハードウェア寄りの勉強が多め。趣味はアカペラとテニス。基本的に運動が好き。最近、ランニングを始める。
NumPyの基本からNumPy配列を操作する関数について解説します。
NumPyに用意されている数学関数に触れながら、データ処理の方法を解説します。
NumPyを使い機械学習の基本を解説します。またNumPyの数学関数を利用したニューラルネットワークと強化学習の構築方法についても解説します。
Chapter 1 NumPyの基本
Chapter 2 NumPy配列を操作する関数を知る
Chapter 3 NumPyの数学関数を使う
Chapter 4 NumPyで機械学習を実装する